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We investigate, using theoretical and computational techniques, the processes that lead 
to the drag force on a rigid surface that has two-dimensional undulations of length L 
and height H (with H / L  << 1) caused by the flow of a turbulent boundary layer of 
thickness h. The recent asymptotic analyses of Sykes (1980) and Hunt, Leibovich & 
Richards (1988) of the linear changes induced in a turbulent boundary layer that flows 
over an undulating surface are extended in order to calculate the leading-order 
contribution to the drag. It is assumed that L is much less than the natural lengthscale 
h,  = hU,/u, over which the boundary layer evolves (u* is the unperturbed friction 
velocity and U, a mean velocity scale in the approach flow). At leading order, the 
perturbation to the drag force caused by the undulations arises from a pressure 
asymmetry at the surface that is produced by the thickening of the perturbed boundary 
layer in the lee of the undulation. This we term non-sepuruted sheltering to distinguish 
it from the mechanism proposed by Jeffreys (1925). Order of magnitude estimates are 
derived for the other mechanisms that contribute to the drag; the next largest is shown 
to be smaller than the non-separated sheltering effect by O(uJ Uo). The theoretical 
value of the drag induced by the non-separated sheltering effect is in good agreement 
with both the values obtained by numerical integration of the nonlinear equations with 
a second-order-closure model and experiments. Although the analytical solution is 
developed using the mixing-length model for the Reynolds stresses, this model is used 
only in the inner region, where the perturbation shear stress has a significant effect on 
the mean flow. The analytical perturbation shear stresses are approximately equal to 
the results from a higher-order closure model, except where there is strong acceleration 
or deceleration. The asymptotic theory and the results obtained using the numerical 
model show that the perturbations to the Reynolds stresses in the outer region do not 
directly contribute a significant part of the drag. This explains why several previous 
analyses and computations that use the mixing-length model inappropriately 
throughout the flow lead to values of the drag force that are too large by up to 100%. 

1. Introduction 
Which physical process is dominant in inducing the drag on undulating topography 

below a turbulent boundary layer? This question remains largely unanswered. 
Furthermore, the magnitude of the resulting drag has no generally accepted value. 
Recent reviews of the drag induced by undulating surfaces have been written by 
Taylor, Mason & Bradley (1989) and Hunt et al. (1991). The change, induced by the 

t Present address: c/o BP Exploration, Fairbanks, Alaska, USA. 
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undulation, in the drag force has important practical implications, particularly in 
meteorology. A key mechanism controlling the large-scale atmospheric motions is the 
transfer of momentum between the atmospheric boundary layer and the surface of the 
Earth. The large-scale numerical models that predict global climate typically have a 
spatial resolution on the order of 100Km and, in order to model the momentum 
budget realistically, these climate models must account for the effects of the smaller- 
scale topographic features (subgridscale effects) that cannot be resolved explicitly. This 
is done by defining, for each grid element of the model, a roughness length that reflects 
the momentum exchange caused by the subgridscale effects. Recently, submesoscale 
numerical models have been used to estimate these roughness lengths for particular 
terrain and atmospheric conditions (Mason 1986a). Estimates of the dependence of the 
momentum exchange on the shape and lengthscale of the terrain and atmospheric 
conditions cannot be made systematically without a better understanding of the 
mechanisms that induce the drag. We focus on two-dimensional undulations and 
present a systematic investigation of the inter-relationship between the key drag 
mechanisms which should help the development of general formulae and guide future 
numerical and experimental studies. 

The drag force on the surface is a result of the effect of the turbulent Reynolds 
stresses on the mean flow, since there would be no net force in a purely inviscid flow. 
Hence, in order to understand the physical mechanisms that enhance the force, the 
effect of the Reynolds stresses on the mean motions must be considered carefully. In 
$ 5  we investigate the structure of the perturbations to the turbulence using theoretical 
scaling arguments and the results of numerical modelling. In the numerical study, 
which is described in 94, the nonlinear Reynolds-averaged momentum equations are 
integrated with two models for the Reynolds stresses: the mixing-length model and the 
second-order-closure model of Launder, Reece & Rodi (1975). (Details of the 
numerical techniques and results of the velocity field have been reported by Newley 
1986 and Hunt, Newley & Weng 1990). In the flows of interest, the lengthscale L of the 
perturbation is short compared to the relaxation lengthscale of the boundary layer, 
h, = hU,,/u,, where h is the boundary layer depth, U, is a characteristic value of the 
upwind mean flow (defined in $2 to be the value at the top of the middle layer) and u* 
is the approach flow friction velocity. In this limit, the perturbations to the turbulence 
are shown here to be governed by different dynamics in different regions of the flow. 
We thereby derive important constraints on the type of turbulence closure that can 
model the changes to the Reynolds stresses in such a boundary layer. These conclusions 
are applicable to turbulent boundary layers that are perturbed in a variety of ways; 
they are not specific to the flow over an undulation (see 95.4). 

The drag force resulting from each of the physical mechanisms is investigated by 
extending the asymptotic theories developed by Sykes (1980) and Hunt, Leibovich & 
Richards (1988, referred to herein as HLR), which describe the linear changes to a 
turbulent boundary layer flowing over a hill of height H, with H / L  < 1. The theory is 
based on the technique developed for perturbed laminar boundary layers of dividing 
the flow into layers where different dynamical processes dominate. In the laminar 
boundary layer flow over an obstacle, the ‘triple deck’ method pioneered and 
subsequently reviewed by Stewartson (1974), can be used to describe the flow (Smith 
et al. 1981). In the case of turbulent boundary-layer flows, different forms of the 
governing equations are necessary in the different regions since the dominant 
behaviour of the Reynolds stresses changes through the flow. In 92, general arguments 
are used to derive the asymptotic structure of the perturbed turbulent boundary layer 
based on the assumptions that H / L  4 1, L + h, and u*/U,, + 1. The analytical model 
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FIGURE 1. Flow geometry and asymptotic structure. 

uses the simplest turbulence model that is consistent with the results of $ 5 ;  namely, 
mixing length in the inner region and rapid distortion theory in the outer region. After 
evaluating higher-order terms in the theory for the velocity field, an explicit formula is 
derived for the drag. 

1.1, ClassiJcation of the drag mechanisms 
The change to the drag force on the surface may be written as 

AF = pU,Z LA, (1.1) 

where p is the density of the boundary-layer fluid, L is the length from the hill summit 
to a point at half this height and h is the dimensionless drag coefficient, which 
characterizes the effect of the undulation on the drag. Previous theoretical and 
numerical investigations of turbulent boundary-layer flow over undulating terrain have 
suggested various mechanisms to account for the drag force. We propose that these 
mechanisms may be classified, and their effect on the drag estimated, as follows (refer 
to figures 1 and 2a-d) : 

Non-separated sheltering (NSS)  Cfigure 2 a)  
The actions of the Reynolds stresses close to the surface, in the inner region of depth 

1, cause a thickening of the boundary layer on the leeside of the hill and, thence, to 
separation of the mean flow when the slope is large enough. The thickness of the inner 
region is therefore asymmetric and so the largely inviscid outer-region flow is 
asymmetrically displaced downwind of the hill crest which leads to an out-of-phase 
component to the pressure perturbation. The contribution to A from the non-separated 
sheltering effect may then be estimated (see $3 below) as 

where c = u* /  U,, is the non-dimensional friction velocity and Asym[Au(I)] denotes the 
asymmetric part of the streamwise velocity perturbation in the inner region. This 
mechanism is related to Jeffreys' (1925) sheltering hypothesis, which was developed for 
separated flows over moving waves of large slope to account for their growth. 
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FIGURE 2 .  (a) Non-separated sheltering. The perturbed boundary layer thickens on the leeside of the 
crest due to the action of the shear stress in the inner region; thereby leading to a pressure asymmetry 
in the outer region. (b) Inner-region Reynolds-stress effects. Towards the surface the turbulence tends 
to a local equilibrium structure, so that the Reynolds-stress perturbations are determined by the local 
velocity gradient. The asymmetry in the inner region leads to perturbations to the Reynolds stresses 
that are out of phase and hence the Reynolds normal stresses are out of phase at the surface. This 
changes the drag. (c)  Outer-region Reynolds-stress effects. The ' non-separated ' sheltering in the inner 
region leads to a change, AI, in the displacement of the largely inviscid outer-region flow. 
Consequently, the (rapid) distortion of the Reynolds stresses in the outer region is displaced 
downwind of the crest, thereby contributing to the drag. ( d )  Finite-amplitude-distortion effects. For 
larger slopes the distortion (and travel time or drift, AT)  of the eddies is different along adjacent 
streamlines and so the distortion is not exactly in phase with the mean streamlines. 

Inner-region Reynolds-stress eflects ( I R S )  yigure 2 b) 
Within the inner region, the turbulence tends to a local equilibrium so that it adjusts 

to the local velocity gradient. The asymmetry of the mean flow, and the mean velocity 
gradients, in the perturbed boundary layer lead to asymmetrical perturbations in both 
the normal and shear Reynolds stresses. These additional asymmetries lead to changes 
in the pressure and thence to the force on the boundary (Townsend 1972, 1980). The 
perturbations to the Reynolds stresses in the inner region, A P ,  scale on u t ,  so that 
AIRS, the drag coefficient associated with this effect, may be estimated as 

see $6.1. 
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Outer-region Reynolds-stress eflects (ORS) Cfigure 2 c )  

The distortion to the turbulent eddies in the outer region is determined by the history 
of the strain by the mean flow and may be calculated using rapid distortion theory 
($5.3.2). The mean flow in the outer region is displaced slightly downwind of the hill 
crest by the non-separated sheltering and so the distortion of the turbulence in the 
outer region is slightly out of phase with the topography. This effect also leads to a 
drag, whose coefficient may be estimated ($6.2) as 

( 1 . 4 ~ )  

This mechanism was first suggested by the work of Sykes (1980). In a related 
calculation of the growth of water waves, Jacobs (1987) has attributed the leading- 
order asymmetric changes to the boundary layer to the effects of the Reynolds stresses 
in the outer region; this is not in agreement with the present analysis, as is discussed 
in $5.3.1. 

The outer-region Reynolds stresses are also affected by the curvature of the mean 
streamlines. The linearized effects of the curvature lead, through the rapid distortion 
mechanism, to significant changes in the turbulence (Zeman & Jensen 1987) and thence 
to a linear pressure perturbation that is in anti-phase with the undulation. As discussed 
in 56.3, this pressure enhances the non-separated sheltering and thereby induces a 
contribution to the drag of magnitude 

(1.4b) 

Eflects offinite-amplitude distortion (FAD) (jigure 2 d )  

At higher values of H / L ,  it may also be significant to consider the asymmetry in the 
Reynolds stresses produced by a finite-amplitude distortion to the flow. There is a 
nonlinear drift, of O(H2/L2) ,  of fluid elements (Hunt 1973) and hence the rapid 
distortion of the turbulence in the outer region is out of phase with the surface 
(Townsend 1980). This leads to a contribution to the drag coefficient, which may be 
estimated as 

The remainder of the paper is organized as follows. The analytical model is 
formulated, and the asymptotic structure developed, in $2. In $2.3 the asymmetric 
pressure perturbation is shown to play a central role in determining the drag. The 
analytical model is extended in $3 to calculate an explicit formula for the asymmetric 
pressure associated with the non-separated sheltering. In 54 the numerical model is 
described. The effects of the undulation on the turbulence dynamics are investigated in 
§ 5 using the results of the numerical simulations augmented with theoretical scalings. 
Thence, in $6, estimates are derived for the contributions to the asymmetric pressure 
from the other effects described above. An explicit formula for the drag is calculated 
in $7, which, in $8, is compared with the present numerical results and other 
experimental and computational studies. 
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2. The analytical model 
2.1. DeJinition and equations 

Consider a fully developed turbulent boundary layer over a surface, of roughness 
length z,, that has a small two-dimensional undulation, see figure 1. The upwind 
velocity profile is U&), which is assumed steady on a timescale long compared with 
the time for an eddy to be advected over the hill. The unperturbed velocity profile is 
assumed to be logarithmic near the surface, in the inner region (defined below), so that 
the shear stress in the approach flow, rB, is constant and equal to pu i  in the inner 
region (u* is the upwind friction velocity). Above, in the outer region, U,  may take a 
more general form. The surface is described by z,* = Hf(x*/L), where His  the height, 
L is the half-length (the length between the summit and a point at half the hill height), 
a lengthscale for the hill (or the perturbation in general). The undulation is assumed 
small so that one of the small parameters of the problem is H / L  Q 1.  

The leading-order pressure perturbation develops in the middle layer (defined in 
52.2.2) at a height of order h, above the surface, so a suitable value on which to make 
the mean velocities non-dimensional is the value of the upwind velocity at 
h,, U, = U,(h,), and then the pressure perturbation is naturally made non- 
dimensional on pU,Z. All components of the Reynolds stresses are made non- 
dimensional on pu:, where u* is the upwind friction velocity. Finally, the coordinates 
(x*, z*) are made non-dimensional on L. 

The flow variables are expressed as the unperturbed values for flow over flat ground 
plus a small perturbation (e.g. Au) caused by the presence of the topography. 
Furthermore, the leading-order pressure induced by the hill, which drives the perturbed 
flow, scales on H / L ,  so that the perturbed quantities may be expanded as power series 
in the slope (see HLR). The expansions hence proceed as follows: 

U* = U,+Au, ..), (2.1 a) 

W* = Aw, (2.1 b) 

(2.1 c) 

r* = pu: + Ar, where Ar = pu: ( E T [ ~ ]  + L2 H Z  d21 + . . . ), ( 2 . 1 4  
L 

where the T, are the total normal Reynolds stresses and the T, are the normal 
Reynolds stresses in the approach flow. In most of what follows, the linear 
perturbations only are considered and the superscript [l] is omitted. 

Before considering the governing equations and boundary conditions, a displaced 
coordinate system is introduced to ensure that at zeroth order the perturbed mean flow 
follows the topography near the surface and far above the surface the perturbations 
decay to zero. The displaced vertical coordinate, 2, is therefore defined to be 
proportional to the streamfunction of equivalent inviscid irrotational flow over the 
undulation. The displaced horizontal coordinate, X ,  is defined such that the overall 
coordinate system is orthogonal. Before defining explicitly the form of the 
transformation, we note the following simplification. 

In the present analysis, only the linear perturbations to the flow are calculated, so 
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that Fourier transforms may be defined in the streamwise direction in order to solve 
the equations. The Fourier transform of, for example, the streamwise-velocity 
perturbation is defined by 

Au(s, z)  = Au(x, z )  e-isx dx. Sma 
No special symbols are used for the transformed variables; when confusion may arise, 
they are distinguished by writing the argument list. An exception to this notational rule 
is the hill shape function, Ax),  whose transform is written 

a0 

A s )  = 1 Ax) e-isx dx. 
-m 

(2.3) 

At each wavenumber, s, a displaced and deformed set of coordinates is defined by 

where G“ and are defined by 

d26/dZ2 -s26 = 0, F’ = G. ( 2 . 5 ~ )  

Hence for a neutrally stratified flow that is unbounded in the vertical - 
G = ePSZ. (2.5b) 

In order that the normal velocity at the surface is zero, 6(0) = 1. 
In the linear approximation, the Fourier transforms defined with respect to X are 

equivalent to those defined in x (Belcher 19907). Hence, to the linear approximation, 
the displaced coordinates are defined with respect to the Fourier transforms of the flow 
variables. 

A crucial feature of the transformation to the displaced coordinate system is that the 
vertical velocity and Reynolds-stress perturbations change. Denoting the perturbations 
in the displaced coordinate system with subscript d, the vertical velocity transforms, to 
leading order in H / L ,  as 

which implies that do) is the inviscid irrotational vertical-velocity perturbation induced 
by the undulation. Under the transformation the Reynolds-stress components become 

r,, = rxx-2isfG, r,, = rz.+2isfc, r = rd+idG(T,,- T,,)/pu2,. (2.7) 

These changes in the Reynolds stress arise from the kinematic effect of the rotation of 
the mean streamlines. 

Solutions for the linear perturbations are obtained by transforming the governing 
equations into the displaced coordinate system. The details are laborious, but 
straightforward (see Belcher 1990), and the resulting solutions are equivalent to those 
obtained by HLR, who used a simpler discontinuous vertical coordinate. Hence the 
details of the coordinate transformation are not described here, although the 
subsequent extensions of the HLR analysis will be expressed in the displaced 
coordinate system (see also the Appendix). 

t A copy can be obtained from the authors or the editorial office on request. 

-- 
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In non-dimensional form the Reynolds-averaged equations governing the leading- 
order perturbations to the flow in the displaced coordinates are 

( 2 . 8 ~ )  

(2.8 b) 

( 2 . 8 ~ )  

where E: = w*/ U,, is the second basic small parameter of the problem, which is typically 
0.03-0.07 in the atmosphere. (Note that the Reynolds number is assumed to be 
sufficiently large that the hill surface is aerodynamically rough and the viscous stresses 
can be neglected throughout the flow.) Equations ( 2 . 8 ~ )  and (2.8b) should each have 
two extra terms that arise from the coordinate transformation and involve the 
gradients of the unperturbed pressure and Reynolds-stress distributions. In the very 
deep boundary layers considered here, these terms are numerically small and have been 
neglected. 

The boundary conditions on the leading-order perturbations are 

u, = w, = 0 on Z =  zo/L (2.8d) 

and u,, wd,pd, 7d + 0 as Z - t  00. (2.8e) 

2.2. Structure of the perturbed mean flow 
2.2.1. Division into inner and outer $ow regions 

The structure of the mean flow perturbations is now examined to determine the 
(dimensional) scale height, 1, over which the Reynolds stresses significantly influence 
the dynamics of the mean flow perturbations. The scaling is carried out in terms of a 
small parameter that is defined as l / L  by analogy with classical laminar boundary-layer 
theory. The O(H/L) flow perturbations are now expanded in powers of l /L ,  so that for 
example 

where [ = ZL/l  = Z * / l  is a stretched vertical coordinate. Then, at zeroth order, except 
very close to the surface (see $2.2.2 below), the inertial term in ( 2 . 8 ~ )  balances the 
pressure perturbation, i.e. at leading order (2.8 a )  becomes 

sup) a p p  
ax ax u-+- = 0. (2.1 0 a) 

At first order in 1/L, these terms are out of balance, and the residue is balanced by the 
leading-order perturbation shear-stress gradient. This first-order balance occurs at a 
height of order 1 if 

which reduces to lln(l/.zO) - KL. It is convenient to fix the constant so that 

lln(l/z,) = ~ K ~ L .  (2.1 1 )  
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The small parameter for the inner region is then defined as 

Z/~K'L = ln-l(l/z0) = e / ~ U ( l ) .  (2.12) 

(This is S in the notation of HLR.) The scale height of the inner region is then 1 - sL. 
The parameter U(1) = UB(Z)/UB(hm), which measures the shear across the middle 
layer, is of order one; it has, however, a numerically significant variation with e: 

U(Z) - 1 + O(E In (1 / F ) )  as F + 0. (2.13) 

The flow domain is divided into two regions: Z = O(1), the outer region, where the 
Reynolds stresses have an O(e2) effect on the mean flow (see $5.3 below), and 2 = O(e), 
the inner region, where the mean velocity perturbations are influenced by the 
perturbations to the shear stress at O(E) (see also $5.1 below). 

2.2.2. Asymptotic structure of the outer and inner regions 
The arguments above show that in the outer region the perturbations are largely 

determined by inviscid dynamics. As in the well-established theory of perturbed 
laminar boundary layers (e.g. Smith et al. 1981), the perturbations to the flow in the 
outer region are inviscid, even though the unperturbed flow is determined by the 
viscous stresses for the laminar boundary layer or the Reynolds shear stress for the 
turbulent boundary layer; this point is elaborated in $ 5 when we analyse the distortion 
of turbulence in the outer region. 

In the outer region (2.8) can be reduced to a single equation for w d :  

(2.14) 

The O(F) error is from the curvature terms; the neglected terms associated with the 
shear stress gradients are of second order in E ,  if correctly calculated (see $ 5  below). 

The height over which the shear term (wd U"/ U )  is comparable with the horizontal 
gradient term (a2wd/aX2) depends on the length of the hill and the upwind velocity 
profile. If L is less than about 20 % of the boundary-layer thickness, U(z) is logarithmic 
up to a height Z *  - L. Then the ratio of these two terms is 

(2.15) 

This is O( 1) if Z* - h,, which implies that h, is defined by the implicit equation 

h, lnf (h,/zo) = L, (2.16) 

so that h, = ( F / K ) + L .  (2.17 a) 

Conversely, if L is much greater than the boundary-layer thickness, h, (but still much 
less than h,) then 

h, = h, (2.17b) 

since, by definition, there is no shear in the mean velocity profile outside the boundary 
layer. 

Thus the outer region divides into two layers. In the upper layer, 2 = O( l), the shear 
in the unperturbed velocity is negligible and (2.14) reduces to the equation for potential 
flow. When 2 = O(h,/L), the shear in the unperturbed velocity profile dominates the 
horizontal gradient. Then the perturbation velocities are inviscid but rotational. 
Following HLR, this is called the middle layer. The scale for the velocities is then the 
unperturbed boundary-layer value at the height h,, U ,  = U,(Z* = h,). 
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FIGURE 3. Variation of the heights of the asymptotic layers with LIZ,, where L is the length scale of 
the hill, and h,, I and 1, refer to the middle layer, inner region (and shear-stress layer, SSL) and inner 
surface layer (1%) respectively. 

Near the surface (2 = O(e)) the pressure perturbation term balances the inertial 
stress terms at zeroth order and the shear stress is in balance with the residue of the 
inertial terms at first order. This is called the shear-stress layer, denoted (SSL). The 
detailed analysis of the (SSL) shows that the shear stress gradient solution diverges 
logarithmically at the surface (a point first made by Sykes 1980). It is therefore 
necessary to match the (SSL) solution with an even thinner layer, the inner surface layer 
(ISL). Across this layer, the perturbation shear stress is constant at zeroth order but 
its gradient changes by O(1). HLR show that a characteristic height of the (ISL) is 
1, = (ZZ,)~. The (ISL) is very thin; 1, can be related to the scale height of the inner region 

1, = le-ll". (2.18) 
by 

2.2.3. Summary of assumptions, lengthscales and practical values 
The analytical theory is based on four assumptions. The first three have already been 

discussed and are (i) low slope, H / L  + 1 ; (ii) .c = u*/  Uo 4 1 ; and (iii) a rapidly varying 
pressure perturbation, L < h,  = hu,/U,, which ensures that the inner region lies well 
within the boundary layer. The fourth assumption is that the height of the hill is less 
than the scale height of the middle layer, H 4 h,. This latter criterion is required so 
that the equations governing the flow perturbations in the middle layer may be 
linearized (see HLR). It is possible to derive nonlinear solutions for the middle layer 
which are valid when the linear solutions apply in the other layers (see HLR). 

Given the above assumptions, the perturbed flow divides asymptotically into four 
layers. In the outer layer Z = Z*/L  = O(1). In the middle layer 2 = O(h,/L), which 
is of order d when the approach flow is logarithmic throughout the middle layer. In the 
inner region Z = O(l/L)  = O(e) and, by assumption (iii), the upwind velocity profile is 
logarithmic in the inner region. In the inner surface layer 2 = O(l,/L) = O(e-'/.). 

Graphs of h,/zo, Z/zo and lJz0 against L/zo are plotted in figure 3. Some practical 
values are: if L = 250 m and zo = 0.1 m, then h, M 95 m, 1 M 16 m and 1, NN 1.3 m, so 
that assumption (iv) requires that H << 100 m. A good working maximum value for the 
slope is 3, so that, given L = 250 m, H < 80 m is required to keep the slope small. 
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2.3. Drag calculation and asymptotic estimates 
The force on the hill surface, 4, is computed by integrating (in the undisplaced 
coordinates) the normal component of the stress tensor, uu, along the surface of the 
topography, viz. 

where n is the normal into the hill surface and is given by 

(2.19) 

(2.20) 

Taking the horizontal component of (2.19) and substituting for the stress tensor, the 
perturbation drag force becomes 

(2.21) 

The integrals are taken over one wavelength of periodic terrain, or from far upstream 
to far downstream for an isolated hill. 

The integral of the linear stress term is zero. This result is obtained by integrating 
the linearized x-momentum equation, namely 

Integrating by parts and using continuity on the inertial terms gives 

m 

(7[11(x, Z )  -7‘11(x, 2,)) dx = w[ll(x, z )  U(z) dx lx--m 5=-m +r [p[ll(co,z’)-p[ll(- ~ ~ , Z ’ ) + ~ U [ ~ I ( W , Z ’ ) - ~ U ~ ~ I ( -  m,z’)]dz’. (2.23) 

For an isolated hill, far upwind and far downwind the p[ll and u[ll perturbations are 
zero. For periodic terrain, they are periodic and so the last integrand on the right-hand 
side of (2.23) is zero. Then as 2-t 00 the wr1] and 7[11 perturbations tend to zero, so that 

z’=zo 

(2.24) 

These arguments show that the leading-order perturbation to the drag force is of 
second order in the slope of the topography, H/L,  and that contributions arise from 
the components of the normal stress that are in phase with the slope of the undulation 
together with the mean value of the O(H2/L2)  shear-stress perturbation. 

We focus on the force caused by the pressure perturbation, A&, (referred to as the 
pressure force) so that 

(2.25) 
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The calculation of the pressure force now reduces to determining that part of the 
pressure that is in phase with the slope of the topography, i.e. out of phase with the 
elevation. In $3  we show that the out-of-phase pressure is of O(e2). hence for sinusoidal 
topography the integral over the pressure term in (2.25) reduces to 

(2.26) 

where P is the O(e2) pressure coefficient at the surface. Therefore the magnitude of 
the perturbation drag force is 

(2.27) 

2.4. Equation governing the pressure perturbation 
Taking the divergence of the momentum equation and using the continuity equation 
leads to an equation for the pressure perturbation, which, in the displaced coordinate 
system, is 

-sye[2U’U-s2(4is+ 2s(Tx, - q,))]. (2.28~~) 

Hence, when Z = Z * / L  = O(l), the equation (2.28a) for the pressure is elliptic. The 
group of terms on the right-hand side in the bracket multiplied byfg arise from the 
transformation into the displaced coordinate system and are proportional to the 
curvature of the streamlines, s y  

Since the flow in the upper layer is potential flow (see HLR), the boundary condition 
on the presure perturbation at the bottom of the upper layer, where 2 - h,/L, shows 
that 

(2.28 b) 

where w is the vertical velocity perturbation in the Cartesian frame. 
Equations (2.28) show that an asymmetric pressure perturbation, which develops in 

the upper layer, can arise from three sources : (i) an asymmetric flow in the layers below 
the upper layer, which affect the upper-layer pressure perturbation through the 
boundary condition (2.28 b) ; (ii) an asymmetric vertical velocity perturbation that is 
generated within the upper layer; or (iii) an asymmetric Reynolds stress perturbation 
that is generated within the upper layer. 

3. Analytical solutions for the effect of non-separated sheltering 
The boundary condition on the pressure, (2.28 b), has an asymmetric component 

from the matching with the inner region and leads to the dominant contribution to the 
asymmetric pressure. It is termed non-separated sheltering. The HLR analysis is now 
extended to calculate this term. 

The solutions derived by HLR (the full solutions are listed in the Appendix) for the 
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perturbations in the inner region show that the streamwise velocity perturbation is not 
exactly in phase with the undulation. The first two terms in the €-expansion (2.9) are 

Here r?(O) = -$is the leading-order (in 6 )  surface pressure perturbation and (1 -In {) 
is the local form of the middle-layer solution (recall that { = Z*/ l ) .  KO is the modified 
Bessel function (e.g. Abramowitz & Stegun 1972), which arises due to the balance in 
the shear-stress layer (SSL) between U ( l )  au,/aXand a.r,/az (together with the mixing- 
length formula, which is discussed in $5.2). Furthermore, KO has real and imaginary 
parts so that it has components both in and out of phase with the undulation. At the 
top of the inner region, as [+ co, however, KO --f 0, so that there is no asymmetry in the 
horizontal velocity above the inner region at this order. 

Using the continuity equation (2.8~)’ the O(2)  vertical velocity is given by 

The first set of terms, which are part of the inviscid (middle layer) component of the 
perturbation, are in phase with the slope of undulation and are not further considered. 
The second set of terms, however, are forced by the asymmetric part of the O(e) 
streamwise velocity perturbation; the constant $ is required to ensure that the vertical 
velocity is zero at the bottom of the (SSL), to match with the (ISL) where [ - ZJZ. The 
higher-order terms ug) and wf)  have been derived by Belcher (1 990) and compared in 
detail with numerical and experimental results by Weng et al. (1991). Examples of 
comparisons between numerical results and the first- and second-order analytical 
solutions are given in figures 4(a) and 4(b). Note that the analytical solutions for the 
(SSL) are asymptotic series and, for finite values of 6, the solution for ud does not equal 
zero as c + O .  However, the (ISL) solutions satisfy the no-slip surface condition and 
match with ud in the (SSL) as e +  0 (see Belcher & Hunt 1993b). Weng et al. (1991) have 
suggested a heuristic, uniformly valid, formula that is continuous for finite E and 
satisfies the boundary conditions. 

At the top of the inner region, as <+ co, the leading-order vertical-velocity 
perturbation that is in phase with the undulation is obtained from (3.2), which, on 
using the limit [aK,/ac+O as 6- co, becomes 

as (3.3) 

In the following, Re[w&S”L’] denotes the real part of the (SSL) vertical-velocity 
perturbation in the limit [+ co. This shows that at O ( 2 )  there is an out-of-phase 
displacement of the streamlines at the top of the inner region. This we term non- 
separated sheltering, because it is related to Jeffreys’ (1925) ‘sheltering hypothesis’, 
which he suggested to account for the growth of surface waves on water due to the 
blowing of the wind. He supposed that the air flow separates at the crest of the wave 
and subsequently re-attaches downstream. In the present study the flow is not 
separated, but the asymmetric displacement of the streamlines about the undulation is 
due to thickening of the boundary layer on the leeside of the undulation (which may 
be regarded as the initial stages of separation). 

I9 FLM 249 
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In order to calculate the asymmetric pressure boundary condition on the upper 
layer, it is necessary to examine how this out-of-phase vertical velocity perturbation is 
transmitted through the middle layer. In this section, the non-separated sheltering 
effect only is considered, so that it is not necessary to consider any asymmetries 
generated within the middle layer (these are dealt with in 86.2 below). Hence (3.3) must 
match with the solution to the homogeneous equation governing the middle-layer 
perturbations. In the middle layer, where the horizontal gradient i32wd/aX2 is much 
smaller than the shear term, wd U/' /U,  the equation governing the vertical velocity 
perturbations is 

The leading-order vertical-velocity perturbation in the middle layer that is in phase 
with the undulation may then be written using the Heisenberg solution 

Re[w,] - B, U+C, U s" - $$/), 
where 2 = Z*/h, = Z/&. Taking the limit z+ 0 and rewriting in (SSL) variables, the 
form of (3.5) that must match with (3.3) is 

(3.6) 
2K 

Re [wd] - B, U(I )  + C, - &+ O(E) as 2 + o 

since l /h,  = 2&/U(l). Hence (3.3) and (3.6) match if 

U2U)  

The constant C, cannot be determined until the outer-layer solution has been 
calculated. 

At the top of the middle layer, as 2+ co, (3.5) becomes 

since by definition U(h,) = 1. Equation (3.8) must match with the outer layer. The 
homogeneous equation governing the vertical-velocity perturbation in the outer region 
is Laplace's equation, so that the solution is 

(3.9) 
1 

Re [wd] = - Re [wissL)] G" + O(&), 
where G" is defined by (2.5 a). Finally, the continuity and X-momentum equations show 
that 

(3.10) Im[p,J = -Im[uJ = -i-Re[wfsL)]@, 

U ( 0  

1 

U(0 
where Im denotes the imaginary part. 

Hence the thickening of the boundary layer downwind of the hill crest leads to the 
outer-region flow being slightly out of phase with the topography. This leads to an out- 
of-phase surface pressure equal to 

(3.1 1) 
1 w 4 2  . Im [Pd(S, zo)] = - i - Re [whssL)] G'(0) = -- u4(z) 1SfWO). 

U(1) 
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3.1. An alternative derivation 
The non-separated sheltering mechanism leads to the largest contribution to the 
asymmetric pressure and so it is instructive to consider in detail how it arises. By 
continuity, the vertical-velocity perturbation at the top of the inner region that is in 
phase with the undulation is given by 

Using the linearized X-momentum equation, 

""I af[ 
is e is + - ud - In c+ -pd - e- . - Re [isu,] = Re [" 

U(1) 2K2c u(1) K 

(3.12) 

(3.13) 

The first three terms are of O(2) and the final term is of O(a). Hence, the leading-order 
contribution to the asymmetric vertical-velocity perturbation is 

€2 a= 
Re [wfsL)(c-+ oo)] = -- q,)Re[[:%df[]+O(s3) = --k[7,(f[+ c0)-7,(0)]. 

U(1) 
(3.14) 

The asymmetric surface pressure induced by the non-separated sheltering may hence 
be written 

This shows that the leading-order asymmetry in the flow within the (SSL) occurs 
through the balance, in the X-momentum equation, between the inertial term, 
U(1) au,/aX, and the Reynolds shear-stress gradient, &-d/az. The important feature of 
this result is that it shows that the out-of-phase displacement of the streamlines is 
dependent on the leading-order shear-stress perturbation that is in phase with the 
topography. With the mixing-length turbulence model, the shear-stress perturbation 
that is in phase with the undulation is in good agreement with the numerical 
calculations, $ 5.2. Hence the present calculation gives a good quantitative value of the 
leading-order pressure asymmetry induced by the non-separated sheltering effect. 

4. The numerical model 
We now present and analyse results of numerically integrating the full nonlinear 

momentum equations with (i) a mixing-length model for the shear stress throughout 
the perturbed flow and (ii) a ' second-order '-closure model for the turbulent stresses. 
These results show the strengths and limitations of these two levels of turbulence model 
and are used to establish theoretical scaling arguments (5 5 )  to describe the changes to 
the turbulence. 

The underlying physical assumption of a mixing-length model of the Reynolds shear 
stress is that the turbulence is in a local equilibrium where the production of turbulent 
kinetic energy balances, at leading order, its dissipation (Townsend 1961). Equ- 
ivalently, the mixing-length model is appropriate only when the timescale of the 
turbulent eddies is much less than the timescale imposed by the perturbation. As we 
show in $ 5  below, these criteria are satisfied only in the inner region. Therefore to 
assess the limitations of the simple mixing-length model and to compute the entire flow 

19-2 
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with one turbulence model that is valid everywhere (even if, inevitably, it is 
approximate), it is necessary to use a more general model that incorporates the effects 
of advection, pressure redistribution and turbulent transport of turbulent energy, such 
as the second-order-closure model of Launder, Reece & Rodi (1975) (referred to herein 
as LRR). We present the results of computations performed using both models. 

4.1. The mixing-length turbulence model 

In the mixing-length model of the Reynolds streses (as used by Taylor & Gent 1974 and 
later authors), an eddy-viscosity hypothesis is first made to relate the Reynolds stresses 
to the mean flow: 

The turbulent 'viscosity', vt, is then related to the mean flow by 

and the mixing length I,,, is specified by 

1/1, = 1 / K Z +  l/A,,, (4.3) 
where the von Karman constant, K, is taken to be 0.4, and A, is an empirically 
determined length of about one tenth the boundary-layer depth, but which depends on 
the flow since it determines 1, towards the edge of the boundary layer (where the 
mixing-length model is not accurate). 

4.2. Second-order-closure model ,for the turbulence 
The Reynolds-stress equation, in a flow that is steady in the mean, takes the form 

(4.4) 

The term on the left-hand side of (4.4) represents the advection of the Reynolds stresses 
by the mean velocity, the first term on the right-hand side of (4.4) is the production of 
Reynolds stress by the mean flow, the second and third are the linear and nonlinear 
pressure redistribution terms, the fourth, the diffusion of Reynolds stress by the 
fluctuating velocity and by molecular viscosity, and the fifth, the rate of dissipation of 
the turbulence stresses by molecular viscosity. 

The production terms are linear in the Reynolds stress and require no modelling. 
They are given by 

The anisotropic rate of dissipation, E,,, is approximated by the isotropic form, !@,,, 
which is determined from another approximate transport equation : 

where k = - f ~ ~ , ,  see LRR. There are two pressure strain terms in (4.4), the slow, 
'return to isotropy' term, which is modelling according to the suggestion of Rotta, 
namely 

= C1(E/k) (Ti, -yCks,). (4.7) 
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The rapid term, n,,,, models the redistribution of the stress due to the interaction of 

the stresses with the mean flow. This term gives rise to the changes induced in the 
Reynolds stresses due to the rapid distortion in the outer region. Furthermore, it is 
important to model this term correctly to evaluate the effects on the perturbations of 
mean streamline curvature and anisotropy of the turbulence in the approach flow 
(Zeman & Jensen 1987). 

If the turbulence is assumed homogeneous, and if the second spatial gradients of the 
mean flow are assumed small, then nii,, is dependent only on the local and 
instantaneous strain and second-order turbulence moments. Although this term should 
also be dependent on the history of the strain (Hunt 1978), most present second-order 
models assume a linear dependence on rij and the local strain rate aU,/ax,. We use the 
proposal of LRR, namely 

The coefficients of each of the bracketed terms is related to the single constant, c,, using 
the symmetry conditions of nij,,, and linearizing in the anisotropy (see LRR). Q, is 
defined by 

The general expression for the pressure strain correlation shows that there are 
surface integral terms which become important near rigid boundaries (see e.g. LRR). 
To predict correct stress ratios (even in an equilibrium boundary layer) extra 'wall' 
terms are included in the rapid pressure strain. Specific forms for these correction terms 
have been suggested, but a careful analysis of the resulting stress equations, in the near- 
wall limit, for an equilibrium boundary layer shows that the equations have a non- 
unique root (Newley 1986). If the ratios of the Reynolds-stress components are 
assumed to have their correct values at the surface, then the vertical profile of the shear 
stress has unphysical fluctuations of order 15 YO, which have the same magnitude as the 
perturbations induced by the topography. The failure of these models compelled us to 
ignore wall correction terms at the expense of predicting stress ratios at the surface that 
do not agree with atmospheric observations. Zeman & Jensen (1987) avoided wall 
correction terms by using the more general model of Zeman & Tennekes (1975), 
which contains more empirical constants than the LRR model. These extra constants 
are adjusted so that the near-surface stress ratios of an equilibrium boundary layer 
agree with the observed atmospheric data. 

Lastly, the term representing transport of Reynolds stress due to the fluctuating 
velocity is modelled by a generalized gradient transfer model 

(4.10) 

The empirical constants in the model were taken to be c1 = 1.5, c, = 0.4, c, = 0.1 1 ,  

4.3. Solution procedure 
The equations (4.1) and (4.2) were solved by first mapping the flow domain, 
z, = HJTx*/L) to z* = D, into a rectangle, by defining a vertical coordinate 
transformation, 2 = D(z* - H ) / ( D  - H ) .  The equations were then transformed into 

C, = 0.281, cE1 = 1.44, c,, = 1.9. 
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FIGURE 4. (a) Comparison of the streamwise-velocity perturbation at the crest of sinusoidal topography (with H/L = 0.04 and 
zo/L = 2 x calculated using the asymptotic theory and the results computed using the second-order-closure model: -, analytic 
solution for the middle layer and (SSL) to O(E); ---, analytic solution for the (ISL) to O(t.); -0-, results computed using the second- 
order-closure model ; - x -, results computed using the mixing-length model. (3) The streamwise-velocity perturbation (normalized on 
u* H/L) at the summit of Askervein hill (which is described by Ax) = (1 +xZ)-l, H/L = 0.46 and zo/L = 3 x calculated using the 
asymptotic theory and the results measured experimentally (reported in Zeman & Jensen 1987): ---, analytic solution for the middle layer 
and (SSL) to O(E); 0, experimental measurements. (c) Comparison of the streamwise-velocity perturbation (normalized on u* H/L) 
measured by Mason (19863) at the summit of Nyland hill (which has H/L = 0.4 and zo/L = 6 x and the values computed using the 
numerical models with a hill defined by (4.13) with H/L = 0.08 and zo/L = 5 x ---, numerical results using the second-order-closure 
model; - .-, numerical results using the mixing-length model; , experimental measurements. 
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this non-orthogonal system. To compute the fine details of the flow near the surface, 
a variable mesh size was used (the ratio of adjacent mesh points was approximately 1.3) 
and the position of the first grid point was selected as - 0.1 m (i.e. about ~OZ,); 32 grid 
points were used in the vertical and 16 in the horizontal direction (which was regular), 
In order to achieve the steady solution, the flow was started from rest and the solution 
integrated forward in time. The time step, At, was determined by the smallest 
important timescale of the problem Az/(4u,) (so that when the geostrophic wind 
U,  = 10 ms-', At was taken to be 0.02 s). Then steady solutions were obtained after ten 
times the travel time across the terrain. Hence the number of time steps required was 
lo5. This led to a convergence time of about 17 h on the IBM 3081 computer at the UK 
Met. Office (subsequent reprogramming has reduced the convergence time to about 7 h, 
P. J. Mason & N. Wood, personal communication). The usual grid refinement tests 
were made, and the solution changed by less 1 %. All details of the numerical 
procedure may be found in Newley (1986). 

Solutions to the model were computed for two hill shapes: periodic, sinusoidally 
varying undulations, 

f = 1 +sin(+); (4.11) 
and an isolated hill, 

(l+cos($(x-xx,)) if x , - 2  < x < x , + 2 ,  

' = l o  otherwise, (4.12) 

where, in each case, x is made dimensionless with L, the half-length of the hill. 
Profiles of the mean velocity and shear-stress perturbations for the two com- 

putational models, together with some comparisons, are shown in figures 4, 7, and 8. 
Figure 4(a) shows a comparison of the velocity profile at the crest of sinusoidal 

terrain ( H / L  = 0.04) computed using the linear model and the numerical results. The 
maximum value of the velocity perturbation is in good agreement with the second- 
order-closure results, although the height of the maximum is slightly lower according 
to the theory. At larger slopes, the linear model still gives reasonable predictions of the 
mean velocity at the crest as is shown in figure 4(b), where H / L  x 0.5. Figure 4(c) 
shows a comparison between the results of the numerical model and the field data 
measured at Nyland hill (Mason 1986b). The numerical results are for isolated terrain 
with H / L  = 0.08, whereas Nyland hill has H / L  x 0.4. This graph serves to check the 
linear approximation: the velocity perturbations are plotted as Au/(u, H / L ) ,  hence, if 
the linear approximation and the second-order closure model were perfect, the results 
would collapse. The graph shows that the maximum speed-up is calculated reasonably 
well by the LRR-model given this linearization. The poorer agreement near the surface 
is explained, at least partly, by the linear assumption being used for a relatively large 
slope. 

5. Perturbations to the turbulence structure 
5.1. Division of theflow into inner and outer regions 

The acceleration and deceleration of the mean flow changes the structure of the 
turbulence through two processes. Firstly, the mean velocity gradients strain the 
turbulent eddies. The timescale, T,, of these straining distortions is the time taken for 
an eddy to be advected by the mean flow over the distance L, i.e. 
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FIGURE 5. Schematic of typical particle paths in the inner and outer region. 

assuming the approach flow profile is logarithmic. Secondly, the structure of the 
turbulence is modified by the changes in the interactions between the eddies, whose 
significance depends on the time taken for larger eddies to strain smaller eddies, which 
thence become decorrelated. This gives a second fundamental timescale, TL. Near the 
surface in an equilibrium boundary layer, the high shear and the blocking effect of the 
wall determine the strain rates and scales of the energy-containing eddies, which 
determine the dissipation rates. These are of the same order as those of the vertical 
components of the turbulence; close to a rigid boundary, the timescale of the 
horizontal fluctuations is determined by the large-scale motions in the bulk of the flow 
(the inactive motions of Bradshaw 1967 and Townsend 1961). From measurements and 
direct numerical simulations, it is found that the integral lengthscale, Lkw) and 
Lagrangian time scale, TL, may be related approximately by 

Thus, near the surface, where TL < T,, the eddies decorrelate and lose energy on a 
timescale less than the distortion time, T,, so that the production of energy has to 
balance its dissipation and the turbulence is in local equilibrium (except for the largest 
horizontal motions, Mason & King 1985). 

At a (dimensional) distance 1 from the surface, these two timescales are of the same 
order of magnitude. I is defined implicitly by 

(5.3) 1 In (l/z,,) - L. 

Thus the height 1 separates the perturbed flow into two regions (figure 1). Above this 
height, TL > TD and the timescale of the interactions is small compared with the time 
it takes for the flow to pass over the hill. Note that, since Liw) - 0.42*, the energy- 
containing eddies are only weakly affected by the blocking effect of the wall; this is to 
be contrasted with the case of thermal convection, where the blocking effect is of 
central importance (Hunt 1984). 

This division of the perturbed flow into inner and outer regions is shown 
schematically from a Lagrangian point of view in figure 5. In the outer region the 
particle paths are smoothly undulating curves, because the advection by the mean flow 
is more rapid than the eddying motions; whereas, in the inner region, the path of a fluid 
element is more random since the turbulent advection occurs on a shorter timescale 
than the mean flow advection. 
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FIGURE 6 .  Balance of terms in the turbulent kinetic energy equation (normalized on u3,/L) integrated 
from far upstream to the crest of an isolated hill (defined according to the parameters of the numerical 
results in figure 4c): P, integrated production rate; A ,  integrated advection; T,  integrated transport; 
E, integrated dissipation rate. Solid lines denote positive quantities and dashed negative. 

Figure 6 shows the balance of terms in the equation for the perturbed turbulent 
kinetic energy for flow over an isolated hill obtained from the results of the numerical 
model with the LRR model for the Reynolds stresses. In order to show the mechanisms 
through a range of the flow, each of the terms has been integrated over X* from far 
upstream to the summit of the hill. Noting the logarithmic scales, the results show how 
in the lower part of the inner region (Z* < fZ) the production and dissipation processes 
dominate, with the advection term becoming significant at 2" z tZ and the transport 
term becoming comparable at Z *  x 1. In the outer region the advection and 
production terms dominate: when Z* z 41 they are approximately double E .  The 
results shown in figure 6 also show that, according to the second-order closure model, 
at the height Z* E I, all the terms in the turbulent kinetic energy equation are 
significant (see also Zeman & Jensen 1987). The curvature of the mean streamlines also 
has an effect at this level, but is not shown in figure 6. These conclusions are consistent 
with field and laboratory observations (see $5.3.1 below). 

5.2. Inner region 
In the inner region, as Z*/Z decreases, the eddy-eddy interactions become more 
important than the irrotational straining by the distorted mean flow and the turbulence 
adjusts to the local mean velocity gradient (Townsend 1961). Hence the perturbation 
shear stress may be described asymptotically by the mixing-length model. 
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In the analytical model the shear stress is modelled by a mixing-length model 

This model is not used, however, in the outer region (see the further discussion below). 
Townsend (1976) reports that in the local equilibrium layer near a rigid boundary the 

ratios of the stress components are approximately the same for a variety of different 
external flows. Since the flow in the perturbed boundary layer is in local equilibrium 
close to the wall, these ratios remain the same, which implies that 

where -a = T ( ~ / P .  Commonly quoted values for these ratios in high Reynolds 
number (e.g. atmospheric) flows are 

The constancy of these ratios has been used in many models of turbulent boundary 
layers that are perturbed on long and short lengthscales. (e.g. Bradshaw, Ferris & 
Atwell 1967 and Townsend 1972). The field data of Bradley (1980) and the results 
obtained numerically using the LRR (Newley 1986) and Zeman & Tennekes (Zeman 
& Jensen 1987) turbulence models are all consistent with ( 5 . 5 ~ ) .  As explained in $4.2, 
the values of a, /3 and y obtained with the results of Newley's computations are not the 
same as the atmospheric observations. 

The detailed analysis using the mixing length model (see HLR) shows that, near the 
surface ( Z *  < $), Au varies approximately logarithmically so that 

(5 .6~)  

The shear-stress perturbation in the inner region then has magnitude 

-- 
Aufwf/u'wf = A P / F  = A T  v / v  = A X  w /w 7 3 ( 5 . 5 4  

a = -P/uIwI X: 6.3,  /3 = -P/u" X: 4.5, y = - W I z / u "  X: 1.7. (5.5b) 

aAu/aZ* - A u / Z *  In (l/z,). 

1 H 
N u,-Au N -u' 

L * '  
Au 

AT - u,l 
1 In ( l /zo)  L 

(5.6b) 

In order to estimate the height to which the mixing-length model is appropriate, the 
transport equation for the kinetic-energy perturbation, Ak, is analysed. In this 
equation, the advection of turbulent kinetic energy by the mean flow is the first term 
to change the equilibrium balance between production and the rate of dissipation as 
the height increases (see figure 6). This advection has a linearized contribution that may 
be written 

which is in phase with the slope of the undulation. The turbulent kinetic-energy 
equation then reduces to a balance between production, dissipation and advection, 
which, on using (5.5) to relate the kinetic-energy perturbation to the shear-stress 

where k is the turbulent kinetic energy in the approach flow. Hence the mixing-length 
formula is a good approximation for the shear-stress perturbation when 

(5.9) 
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Using the equilibrium-layer stress ratios, (5.5b), and that TL/TD = 22(2*/2) (1 + O(E)), 
the advective effects are of the same order as the production and dissipation when 

(5.10) 

i.e. the mixing-length approximation is valid through only the lower third of the inner 
region. 

A striking feature of the terms that correct the leading-order equilibrium balance is 
their dependence on the anisotropy of the approach flow. In an equilibrium boundary 
layer the turbulence is far from isotropic, so that even if a more complex eddy-viscosity 
model (such as a k--E model) is used, if the eddy viscosity is isotropic, it may well be 
no more accurate than the mixing-length model. 

The curvature of the mean streamlines also plays a dynamic role in changing the 
Reynolds stresses at the top of the inner region. In the upper part of the inner region, 
the mean acceleration induced by the curvature, which is of 

(where R is the radius of curvature of the streamline), of of the same order as the effects 
involving eddy-eddy interactions, which are O((H/L) u2,/I) (Zeman & Jensen 1987). 

Figure 7 (a, b) shows comparisons of the shear-stress perturbation calculated using 
the linear theory and the results of Newley’s (1986) calculations. In this plot 
H / L  = 0.04 and L/zo = 2500. Figure 7 (a) shows how, at the crest (where only the real 
part of the Fourier transform of the perturbation is non-zero), the mixing-length model 
is satisfactory throughout the inner region. On the upwind slope (where the imaginary 
part of the Fourier transform is relevant), the agreement between the mixing-length 
model and second-order closure is not as good. The assumption of a local equilibrium 
is less accurate on the slopes of a sinusoidal undulation where the advective effects (i.e. 
advection of turbulent kinetic energy and the ‘rapid effects’) are sufficiently strong that 
they affect the Reynolds stresses even near the surface and even at very low slopes (see 
figure 7b). 

5.3. Outer region 
In the outer region, where Z = O( 1) and TD/ TL < 1, the ‘time of flight ’ of an eddy is 
less than the eddy-eddy interaction time. The changes to the turbulence are then 
‘rapid’ (Hunt 1978), i.e. dependent on the history of the mean flow strain and not on 
the local velocity gradient. The leading-order changes to the mean flow in the outer 
region are inviscid and the changes to the Reynolds stresses can be calculated 
analytically using rapid distortion theory (as demonstrated by Britter, Hunt & 
Richards 1981, and in $5.3.2). For example, the changes to the streamwise-velocity 
variance, A P ,  have magnitude 

A P / P  N AU/uB(L) N H / L .  (5.11) 

The effect on the mean flow of these changes to the turbulence may be estimated by 
considering the X-momentum equation : 

ow0 u * / m  = O((H/L)  uo u * / L )  

(5.12) 

Hence the perturbed Reynolds stress gradients lead to mean velocity perturbations of 
order 

(5.13) 
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FIGURE 7. Shear-stress perturbation at (a) the crest, and (b) the upwind slope, of sinusoidal 
topography (with H I L  = 0.04 and z,/L = 4 x calculated using the linear theory compared with 
the results computed using the second-order-closure model: -, linear theory for the (SSL) to O(E’); 
x , AT/@:)  above crest in (a) (or upwind slope in b)  from the second-order-closure model; +, 
- AT/(~u:) above trough in (a) (or downwind slope in b) from the second-order-closure model. 

The effects of the Reynolds stresses on the mean flow perturbations are thus of O ( 2 )  
in the outer region. 

5 .3 .1 .  Errors associated with eddy viscosity and mixing-length models in the outer 
region 

Figure 8 shows profiles of the shear stress at the summit of an isolated hill computed 
with the mixing-length and second-order-closure models, together with comparisons 
with field data. These profiles demonstrate that if the ‘history effects’ are accounted for 
through the rapid distortion mechanism, as they are in the second order closure model, 
the shear-stress perturbation is small and in better agreement with the experimental 
observations (see also Zeman & Jensen 1987). For the flow over sinusoidal topography, 
the shear stress perturbation in the outer region is small and positive (Newley 1986; see 
also Belcher & Hunt 1 9 9 3 ~ ) .  

If the shear stress is approximated by an eddy-viscosity model, as in, for example, 
mixing-length or k - E models, then the shear-stress perturbation is 

(5.14) 
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FIGURE 8. Values of the shear-stress perturbations at the crest of an isolated hill computed using the 
second-order-closure and mixing-length models (with the same hill shape and parameters as the 
numerical results in figure 4c), together with comparisons with field data. Note how the second-order 
closure model, which is in good agreement with the field data, shows a small perturbation in the outer 
region, whereas the mixing-length model erroneously predicts a large negative perturbation : ---, 
upwind profile; -0-, numerical results using the second-order-closure model; - x -, numerical 
results using the mixing-length model; A, field data for Askervein (reported in Zeman & Jensen 
1987); V, field data for Nyland hill (Mason 19866); ., field data for Blashaval (Mason & King 
1985). 

for some strictly positive eddy viscosity vt. The gradient of the streamwise velocity 
perturbation is negative throughout the outer region (see figure 4a-c, also computed 
using the second-order-closure model), so that the shear-stress perturbation calculated 
from the eddy-viscosity model is incorrectly predicted to be negative for all topography : 
using the potential flow solutions, the change to the shear stress in the upper layer with 
the eddy-viscosity model (5.14) is 

2% AT = -- AU < 0. 
L 

(5.15) 



582 S.  E.  Belcher, T.  M. J.  Newley and J .  C. R. Hunt 

Furthermore, if the eddy viscosity in the outer region is prescribed using the mixing- 
length model the predicted changes in the Reynolds stresses have the wrong sign and 
magnitude! The mixing-length model may be written 

(5.16) 

If the mixing length, 1, is related to the height above the surface, Z*,  which is of O(L) 
in the upper layer, then the magnitude of the shear stress change is 

(5.17) Ar U, I, Au H U(L) 

This implies a mean velocity perturbation of O((H/L) (u*/Uo) UB(L)), i.e. too large 
compared with (5.13) by a factor UB(L)/u, = O(l/s). A large, negative, shear-stress 
perturbation is indeed observed in the values computed with the mixing-length model 
and plotted in figure 8. 

5.3.2. A rapid distortion model of the upper-layer turbulence distortion 
Rapid distortion theory has been used by Britter et al. (1981) to calculate the changes 

induced in an initially isotropic turbulence at the crest of a hill. We now generalize their 
results, first by considering the form of the distortion due to the mean flow in the whole 
of the perturbed region, and second by considering an initially axisymmetric turbulence 
(as a convenient example of anisotropic turbulence). We focus on the upper layer and 
then it is most convenient to perform this analysis in the Cartesian coordinates (x*, z*). 
In the upper layer the mean flow distortion is irrotational and hence may be 
decomposed into an irrotational strain and a rotation. The rapid effect of these two 
distortions on the turbulence may then be considered separately. 

The specific form of the spectrum function of the initially axisymmetric turbulence 
is the same as used by Maxey (1982), namely 

-------- 
u; u* L u, L u* . 

Here r is a unit vector along the axis of symmetry and B,, B, are arbitrary functions 
of lnzl only and which can be related to the anisotropy S = ?;?z/P = P/P (Newley 
1986). For a small contraction, i.e. Au/U, 4 1, the rapid distortions due to the 
irrotational strain are given by 

(5.19) 

(Full details of this calculation may be found in Newley 1986). The trends and signs 
of the effects of anisotropy agree with analytical solutions obtained in the ‘rapid limit’ 
of the second-order-closure model of LRR and that used by Zeman & Jensen (1987), 
but the numerical coefficients differ slightly. This idealized calculation shows that the 
second-order closure models should give the correct order of magnitude for the normal 
stress changes induced in the outer region. 
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Comparisons of the formulae (5.19) at the crest of an isolated hill with the results 
computed using the second-order-closure model are presented in figure 9. Note how the 
second-order-model computations for t;”5 are closer to the RDT results of (5.19) 
obtained using anisotropic, rather than isotropic, upstream turbulence. The ex- 
perimental evidence (see Zeman & Jensen 1987, and Mason & King 1985) suggests 
that, in contrast to the second-order-closure model results, P increases slightly in the 
outer region (it is likely that the second-order-closure models overestimate the ‘ return 
to isotropy’ for rapidly changing flows). 

The rapid distortion calculations presented by Townsend (1980) show that, at 
leading order in H/L, the rotation by the curvature of the mean streamlines has only 
a kinematic effect on the Reynolds stresses, i.e. the changes may be obtained by 
rotating the stress tensor into the displaced coordinate system (see (2.7)). This agrees 
with the suggestion of Zeman & Jensen (1987) that the curvature effects on the 
turbulence stresses are of O(H2/L2)  in the upper layer at the crest of the undulation. 

The overall changes to the Cartesian components of the stress are then formed by 
adding the two perturbations, (5.19) and (2.7). 

5.4. Discussion 
These scaling arguments, together with the analysis of the numerical results, suggest 
definite criteria that any turbulence model must satisfy if it is to predict correctly the 
perturbations to the Reynolds stresses in any turbulent boundary layer that is subjected 
to a rapidly varying pressure gradient (rapid in the sense that L < hU,(L)/u,). It is 
crucial to consider separately the turbulence in the approach flow and the turbulence 
changes induced by the pressure gradient : many authors have erroneously assumed 
that, because a mixing-length model can satisfactorily be used to calculate a fully 
developed boundary layer that is changing slowly, it can also be used to model the 
perturbations to a turbulent boundary layer changing on a lengthscale less than 

Firstly, the height E above the surface marks a change in character of the response 
of the turbulence to the perturbation. Any turbulence model that is general enough to 
describe fully a range of perturbed boundary layers must be valid above and below this 
transition height. 

Secondly, at heights Z = O(1) the perturbations to the turbulence are largely 
governed by the rapid distortion mechanism. The quantitative changes to the Reynolds 
stresses are dependent on the anisotropy of the turbulence in the approach flow (as 
shown by the calculation of the rapid contraction of axisymmetric turbulence, equation 
(5.19)). Hence if the approach flow turbulence is not well specified it is not possible to 
calculate accurately the changes induced by the perturbation. Any turbulence model 
for the outer region that is based on an eddy-viscosity hypothesis gives perturbations 
to the shear stress of the wrong sign. Furthermore, the mixing-length model implies 
shear stress perturbations in the outer region that are a factor of O( 1 / e )  too large - this 
leads to ‘integrated’ properties (e.g. the net drag change on the surface) also being 
O(~/E)  too large (see $8 below). 

Thirdly, in the lower third of the inner region the perturbations to the turbulence are 
close to local equilibrium and a mixing-length model is appropriate. In the upper two 
thirds of the inner region the advection of perturbed turbulent kinetic energy by the 
mean flow is of the same order as the rates of production and dissipation. This effect 
is greatest at the sloping parts of a hill, where the large accelerations in the mean flow 
occur. The corrections to the mixing-length formula are also dependent on the 
anisotropy of the approach flow, so an isotropic eddy-viscosity model cannot predict 

h*(= h W ) I u * ) .  
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FIGURE 9. The perturbations to the turbulence variances at the crest of an isolated hill (with the same parameters as the numerical results in figure 4c) 
calculated using rapid distortion theory (using the computed values of the velocity perturbation) and compared with the results of the second-order-closure 
model. (a) z; (b) 3; (c) ?. -+-, Upwind values; ---.---, axisymmetric RDT with R = 2; ---n---, isotropic RDT; -0-, results from LRR 
closure model. 
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reliably these aspects of the flow perturbations. However, the effects of the accelerations 
integrated over their streamwise extent determine the maximum shear stress and peak 
velocity at the summit of the hill and these values are adequately modelled by using the 
mixing-length model throughout the inner region (see also Tampieri 1987). Since the 
drag on the surface is an integrated effect, it is reasonable to expect that calculations 
using the linear model should be in fair agreement with those obtained using the LRR 
turbulence model and with experiments (see 4 8). 

6. Estimates of the asymmetric pressure from other effects 
We now return to the analytic model and determine the magnitudes of the 

corrections to the non-separated sheltering contribution to the asymmetric pressure 
perturbation. This is done by examining how asymmetric pressure perturbations are 
generated in (2.28~) by the other physical mechanisms that were discussed in the 
introduction. Particular care must be exercised in estimating the effects of the Reynolds 
stresses on the pressure perturbation because of the two-layer structure of the 
turbulence perturbation. Hence we consider separately the inner and outer regions. 

6.1, Inner-region Reynolds-stress effects 
The effect of the perturbed Reynolds stresses on the out-of-phase pressure 
perturbation within the inner region is now examined. Only effects within the shear- 
stress layer are considered: the (ISL) is so thin that the variation in the pressure across 
it is exponentially small (i.e. O(e-'le)). 

Rewriting (2.28 a) using inner-region variables, the equation governing how the 
pressure reacts to the Reynolds stress perturbations in the inner region is 

The effect of the Reynolds stresses on the surface pressure variation in the inner region 
is thus of second order in E and is given by 

(6.2) 
The different components of the Reynolds stress affect the pressure in fundamentally 
different ways: it is the local value of rzz which causes the pressure change; whereas, 
74 and rxx  both have non-local effects since their contribution to the solution (6.2) are 
integrated. Hence to calculate the surface pressure requires that rzz be modelled 
correctly only near the surface, but the other two terms must be correctly modelled 
throughout the inner region. 

The normal stresses are modelled according to (5.5). The surface stress has an out- 
of-phase component of O((H/L)  u i  e)  (see HLR, and the Appendix) so that rzz leads 
to an asymmetric pressure perturbation of O(pU,2 e3). The integral over the shear stress 
in (6.2) also leads to an O(pU," 2) asymmetric pressure perturbation. Hence the inner- 
region Reynolds-stress effects lead to a correction to the asymmetric surface pressure 
that is O(s) smaller than the contribution from non-separated sheltering (see 53). 

6.2. Outer-region Reynolds-stress efects 
Throughout the outer region the leading-order changes to the Reynolds stresses are 
determined by the rapid distortion mechanism. In order to estimate the effect on the 
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out-of-phase pressure, we focus on the upper layer. The magnitudes of the changes to 
the stresses are also the same in the middle layer, but the 0(1) coefficients from the 
rapid distortion calculation are different because of the significance of the mean shear 
in the approach flow through the middle layer. 

In the upper layer the mean-flow distortion of the turbulence is composed of two 
parts: a rotation and an irrotational strain. The effect of the rotation is discussed in 
$6.3 below, here only the irrotational strain is considered. 

The relevant terms of (2 .28~)  are 

As explained in $5.3.2, rapid distortion theory shows that the changes to the stress 
components may be expanded as power series in the velocity perturbation: 

where A is the O( 1) constant from rapid distortion theory. 
The velocity perturbation is inviscid and irrotational and so using (6.4) the linear 

forcing term on the right-hand side of (6.3) is a linear combination of 6 and G"'. The 
particular solution for the pressure is then a linear combination of sZc and sZG"'. 
These terms are negligibly small (O(z,/L)) at the surface and hence cannot affect the 
drag directly; they can, however, augment the non-separated sheltering, via an indirect 
mechanism. 

To complete the solution for the linear part of pioRS), a multiple of the appropriate 
solution to the homogeneous equation is also required. This arises from the balances 
between the pressure and stress gradients in the X- and Z-momentum equations, 
namelv 

Equations (6.4) and (6.5) then imply that the homogeneous solution is proportional to 
2 A u /  Uo. The non-separated sheltering leads to an asymmetric velocity perturbation of 
O((H/L)  Uoe2) in the outer region (see $3) and thence, through the homogeneous 
solution, to an asymmetric pressure perturbation of O ( p q  ( H / L )  e4), which is of O(2) 
smaller than the direct effect of non-separated sheltering. 

These arguments may be extended to consider the O(H2/L2)  pressure perturbations 
that are induced in the outer region. At O(H2/L2)  the velocity perturbation has 
components that are proportional to e-2sz/L which lead to a pressure perturbation that 
has a significant value at the surface. This velocity perturbation leads, via (6.4), to 
Reynolds-stress perturbations of O((H2/L2)  u",. This leads to an asymmetric pressure 
perturbation of O ( p q ( H 2 / L 2 )  2). 

Hence we estimate that the direct effects of the outer-region Reynolds-stress 
perturbations on the asymmetric surface pressure are of order 

The rapid distortion of the turbulence in the outer region also has an effect on the 
asymmetric pressure perturbation through an indirect mechanism. The particular 
solution to (6.3) is in phase with the topography and equal to 

(6.7) pioRS) = s 2 ~ s ~ f @  = 2(63 /K)~@3)< ,  



Drag on an undulating surface 587 

where A is the O( 1) coefficient from rapid distortion theory. This pressure perturbation 
further accelerates the inner-region flow, since it provides a forcing for the equation 
governing the streamwise velocity perturbations in the (SSL), namely 

The particular solution for the streamwise velocity perturbation is then 

uioRS) = 2U(l) ( s 3 / ~ )  A(sc-i) # O ) .  (6.9) 

The first part of this solution is in phase with the topography and is just the inviscid 
acceleration of the mean flow by the pressure perturbation; the second part, 
proportional to is out of phase with the undulation and is due to the interaction 
between the linearly varying pioRS) and the shear-stress gradient. Furthermore, this 
second part of the velocity perturbation is constant so that it is non-zero at the top of 
the inner region, thereby adding to the non-separated sheltering effect. The out-of- 
phase pressure perturbation which develops in the outer region is 

H €3 

L K 
Asym[p,] = pU,2-2U(l)-Aisf@ = 0 (6.10) 

which is O(s) smaller than the non-separated sheltering effect calculated in $3. This 
process is a result of a balance, at the height of O(I), between the limiting behaviour 
of the two turbulence perturbations (namely the rapid and equilibrium mechanisms), 
hence we recognize that the present model may not give an accurate numerical value, 
of this effect (mainly because the mixing-length model is not adequate at the top of the 
inner region, $ 5 ) .  

6.3. Efects of mean streamline curvature 
Equation (2.28 a) is expressed in the displaced coordinate system and hence contains 
the linear effects of mean streamline curvature. The curvature-induced pressure 
perturbation is then governed by 

(6.11) 

The first term on the right-hand side leads to the inviscid rotational pressure 
perturbation caused by the coordinate transformation and hence cannot induce any 
out-of-phase perturbations. The second set of terms on the right-hand side of (6.11) 
arises from the transformation of the Reynolds-stress tensor into the displaced 
coordinate system, and are equivalent to the linear part of the rapid distortion caused 
by the streamline curvature ($5.3.2). Hence the only linear effect of rotation that 
provides an asymmetric pressure perturbation is the deformation of the normal 
Reynolds stresses, i.e. the last terms in (6.11). 

These terms have the same mathematical form as the forcings induced by the rapid 
contraction of the turbulence, which are discussed in $ 6.2 above. Hence the asymmetric 
pressure induced by the curvature has components of O((H/L) $, (H2/L') e2) from the 
direct mechanisms. The curvature also augments the non-separated sheltering, leading 
to an asymmetric pressure of O@(H/L) U," e3). 
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7. The pressure force on arbitrary terrain 
The zeroth-order surface pressure coefficient over arbitrary terrain can be evaluated 

from its Fourier transform (see Appendix (A 5) )  using the convolution theorem and is 

Using this expression, we find that its contribution to the drag force is 

which is antisymmetric in x and y and hence zero. This result is just a consequence of 
the O(co) pressure perturbation being determined by inviscid dynamics. The 
contribution from the real part of the O(s) and O(e2) pressure perturbations are also 
zero: this is explained as follows. These pressure terms must be linear in do), and 
proportional to some integral power of the wavenumber, s. The higher the power of 
s in the real part of the second-order pressure, the higher the derivative off in the 
convolution integral for the pressure in physical space. Integrating by parts shows that 
the resulting contribution to the drag is zero for any power of s. Hence the leading- 
order drag perturbation is entirely due to the out-of-phase component of the pressure 
perturbation. 

We have shown that the leading-order contribution to the out-of-phase pressure 
perturbation arises from the non-separated sheltering effect. The analysis of HLR has 
been extended to show that the Fourier transform of the asymmetric pressure induced 
by the non-separated sheltering is 

where do) = g@(O). Using the convolution theorem the Fourier transform may be 
inverted and the asymmetric pressure expressed as 

where G'(x, Z )  is the inverse Fourier transform of G"'. The leading-order pressure force 
is then given by 

Then for neutral flow that is unbounded in the vertical, G"'(s,O) = - 1 and the 
aerodynamic drag becomes 

H 2  4 
AFp = - Lp2,  [ - + O(E)] (m Y2(x) dx. 

L2 U4(0 --m 

This expression for the perturbation pressure force scales on the square of u*, the 
approach flow friction velocity, which is determined by the Reynolds number of the 
flow for aerodynamically smooth surfaces or by zo, the roughness length, when the 
surface is rough. Furthermore, the expression varies with U(1) = UB(l)/UB(hm), the 
shear in the upwind velocity profile across the middle layer. This parameter also varies 
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with the Reynolds number, or relative roughness length, since it is dependent on 
u*/Uo = O(ln-1 (L/zo)).  For example, when the lengthscale of the hill is sufficiently 
short that the approach flow profile is logarithmic through the middle layer, 

U(l)  N 1 +O(eln(l/e)) as e+O. (7-7) 

This variation of the drag with e is important for practical purposes. 

8. Comparison with other studies 
When the topography is sinusoidal, (7.6) shows that the drag force is given by 

Figure 10 shows the variation of the perturbation pressure force with slope, H / L ,  for 
sinusoidal terrain. The analytical result (8. I), which predicts quadratic dependence, is 
compared with the experimental values obtained by Zilker & Hanratty (1979) and the 
values computed using the second-order-closure and mixing-length models. The 
theoretical curve is plotted for 1n-l (Liz,) = 0.1. The normalization used for AFis such 
that a value of one corresponds to a perturbation drag force that is equal to the drag 
on an equivalent length of flat terrain. The graph shows that the linear theory is in 
excellent agreement up to xH/2L z 0.3, i.e. up to H / L  z 0.2. Even at these low slopes 
the terrain induces a perturbation drag that is half to three-quarters as large as the 
unperturbed value. For slightly higher slopes, according to the calculations performed 
with the second-order-closure model, the drag increases approximately linearly, and 
can be double the value of the unperturbed drag (so that the total drag is three times 
the value for level terrain). For xH/2L  larger than about 0.5 (i.e. H / L  greater than 
about 0.3) the increase in the drag flattens, indicating that the mean flow has separated 
(field measurements confirm this estimate for the slope required to induce separation). 

The values in figure 10 for the drag obtained numerically using the mixing-length 
model are consistently larger than those from the theory and the values obtained 
numerically using the second-order-closure model. In the domain of validity of the 
linear theory, the mixing length predicts values of the perturbation drag that are about 
100 % larger than the theory, experiments and second-order-closure model results (see 
the discussion of figure 11). At the larger slopes the relative difference is smaller but still 
significant (about 17 YO for H / L  = 0.3). The experimental data show similar trends to 
the results obtained with the models, but are too sparse to enable a quantitative 
comparison to be made over the whole range of slopes between the performances of the 
theory, and the mixing-length and second-order-closure models - a more complete set 
of experimental measurements would certainly be useful. 

We now focus on low slopes and make a more detailed comparison between 
the various methods. Figure 11 shows the variation of the drag coefficient, 
AF,/(H2/L2) pui L, for sinusoidal topography, with the parameter 1n-l (Llz,) = O(e), 
which is of the order of 1n-l (Re,) for smooth surfaces (the Reynolds number is defined 
as Re, = u*L/v).  The theoretical result (8.1) is compared with the values obtained 
from the experiments of Zilker & Hanratty (1979), Townsend's (1972, 1980) 
computations together with the present computations. The results are for the pressure 
force only, i.e. the contribution from the O(H2/L2)  shear-stress perturbation is not 
included. In figure 11 the slope of the undulation, H / L ,  ranges from 0.04 to 0.16 (hence 
the scatter in the computed data is due to nonlinear effects). 
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FIGURE 10. Variation of the perturbation drag force with slope for sinusoidal topography: -, 
linear theory (with ln-'L/z, = 0.1); 0,  experimental results of Zilker & Hanratty (1979); x , results 
computed using the mixing-length model ; -A-, results computed using the second-order-closure 
model. 
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coefficient computed using the mixing-length model; 0, drag coefficient computed by Townsend 
(1972); 0, drag coefficient computed by Townsend (1980); m, drag coefficient from experimental 
results of Zilker & Hanratty (1979). 
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The formula for the leading-order drag coefficient, which is due to the non-separated 
sheltering, is within about 10 % of the results of experiments and those obtained using 
the second-order turbulence closure model. (The rightmost value computed using the 
second-order-closure model is for the largest value of the slope, H / L  = 0.16, and is 
furthest from the linear model.) As explained in $3.1, the good agreement follows from 
the good quantitative agreement between the shear-stress perturbation at the crest of 
the undulation predicted by the theory and the results of numerical calculations with 
the second-order closure. 

The results computed with the second-order-closure model are, of course, only 
approximate: in particular, the anisotropy of the turbulence in the approach flow is not 
modelled correctly ($4.2). The theoretical model shows that at leading order the non- 
separated sheltering is unaffected by the anisotropy of the approach flow; the further 
analysis of $6 suggests, however, that the (assumed) anisotropy of the approach flow 
changes the coefficients (but not the magnitudes) of all the O(E) corrections to the non- 
separated sheltering value of the drag. 

The results obtained numerically using the mixing-length formula throughout the 
flow are more than 100% larger than both the theoretical curve and the results using 
the second-order closure model. The reason is that estimating the shear-stress 
perturbation with the mixing-length model implies a balance, in the outer region, 
between the inertial and shear-stress gradients at O(E) (correctly using rapid distortion 
theory in the outer region implies that this balance occurs at O(e2), see $5.3.1). Hence 
using mixing length in the outer region leads to an out-of-phase pressure perturbation 
of O(pU,"e), and thence the perturbation drag force is too large by a factor of l/c. This 
is confirmed by the detailed calculation of Jacobs (1987), who has calculated the 
asymmetric pressure perturbation using a mixing-length model throughout the flow 
and thereby attributed the leading-order drag force to outer-region Reynolds stress 
effects. We have argued that this conclusion is not correct, since it is based on an 
inappropriate use of the mixing-length model. 

Sykes (1980) has calculated, as asymptotic sequences in the limit E = u*/ U, + 0, the 
perturbations to a turbulent boundary layer passing over a wall-mounted obstacle. In 
his study, the slope of the hump is scaled on the dimensionless friction velocity, so that 
H / L  = d, and hence Sykes' analysis is valid for only asymptotically small undulations. 
Using the asymptotic solutions, Sykes calculated the pressure drag force and found 

AF, = 4pu2, Le f 2 d x  as s+O. (8.2) s 
Sykes then inferred that, since his expression for the perturbation drag is proportional 
to 8, the drag is proportional to H 2 / L 2 .  

From (7.7), in the limit of E + 0, U(Z) + 1 and there is no shear in the approach flow 
through the depth of the middle layer. The result of the present analysis, (7.6), hence 
agrees with (8.2) in the limit s+O, i.e. infinite Reynolds number (for smooth surfaces) 
or in the limit vanishing roughness length, ln-l(L/z,,) + 0 (for rough surfaces). The 
present theory enables Sykes' result to be extended. For finite, but still small, values of 
E ,  U(1) can be significantly different from 1, through the eln(l/e) correction. The 
variation of the drag force from its value in the Sykes limit is then large since A& 
depends on the fourth power of U(1) and its inclusion in the analysis renders the 
asymptotic solution of practical value. For Sykes theory to be valid within 10 YO figure 
11 shows that it is necessary that In-l (Liz,) < 0.025. Although the Sykes result agrees 
with our formula in the limit 8 + 0, he did not explain that the leading-order drag is 
caused by the non-separated sheltering effect. Furthermore, our result, (8. l), is valid 
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for a wide class of monotonic velocity profiles in the middle layer. Stratification can 
significantly alter the shear across the middle layer and hence the drag. (We are 
currently studying this problem.) 

Also plotted on figure 11 are some values inferred from the results of Townsend 
(1972, 1980). These numerical calculations were performed to assess the growth rate of 
water waves by the wind (discussed in a companion paper by Belcher & Hunt 1993 a). 
In the first study, Townsend (1972) assumed that throughout the flow the changes to 
the Reynolds stresses are a fixed proportion of the change in turbulent kinetic energy; 
whereas in the present study this assumption is made only close to the surface, where 
it is justifiable. The turbulent kinetic energy was then solved as part of the numerical 
problem in order to calculate the Reynolds stresses. This calculation was extended by 
Townsend (1980) to account for the variation of the stress ratios due to the rapid 
distortion mechanism. The changes to the stress were prescribed by equations of the 
form 

Au’2 Ak Au 
-- --+-, 
P k u  

where 01 is the ratio P / k  in an equilibrium boundary layer. Each of the stress ratios 
is specified by an equation of the form 

(8.4) 
aaa ~O1-a au aw au 
ax T~ ax ax az7 U-+-= A - + B - + C -  

where A ,  B and C are determined from rapid distortion theory. This model equation 
implies that close to the surface the changes to the turbulence are governed largely by 
equilibrium dynamics, and high above the surface the changes are nearly rapid. The 
two effects are of the same order at the height 1 above the surface, i.e. at the top of the 
inner region. Calculations show that by including these rapid effects the value of the 
drag coefficient is doubled compared with the values obtained with Townsend’s earlier 
model. The 1972 model underestimates the drag mainly because the shear-stress 
perturbation at the top of the inner region is too small using this turbulence model (cf. 
the discussion of $3.1). Townsend’s (1980) method of modelling the changes to the 
turbulent stresses is similar to the approach adopted here and indeed the two theories 
are in close agreement. 

9. Discussion 
The present study has two main aspects. Firstly, we have derived constraints which 

must be satisfied by the closure model for the Reynolds stresses in order to model 
correctly the changes to a turbulent boundary layer that is subjected to a rapidly 
varying pressure gradient (i.e. L 4 hU,(L)/u,). The implications of this analysis have 
been described in 55.4. Secondly, we have examined the process that control how a 
turbulent boundary layer increases the drag force on an undulating surface. 

The leading-order contribution to the drag arises from the non-separated sheltering 
effect, i.e. the thickening of the inner region on the leeside of the crest and the resulting 
asymmetry in the outer-region flow. An analytic formula has been derived for the drag 
induced by the non-separated sheltering by extending the analysis of Hunt, Leibovich 
& Richards (1988). Furthermore, estimates have been obtained for the magnitude of 
the contributions to the drag from the other mechanisms that are described in $1.1. 
These are all smaller than the non-separated sheltering effect when both H/L and e are 
small. The orders of magnitude of the contributions to the dimensionless drag 
coefficient from each of the processes are summarized in table 1. 
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AP AT$ 

- - NSS H 2  H 2  
-2, - €31. 
L, L2 

IRS H 2  H 2  NC 
L2 -2 

L2 
H2$ NC ORS 

L2 L2 
NC 

- e2 
L3 L3 

- 

- H2$ - 

- H 3  €2 
FAD H 3  

t The contributions to the drag from the second-order shear-stress perturbation have not been 
calculated, but the numerical results suggest that they are small (see also Sykes 1980). 

1 This correction is from the enhancement of the NSS by the ORS effects ($6.2). NC means not 
calculated. 
TABLE 1. Orders of magnitude of the contributions to the drag (normalized on pU,Z) from the var- 

ious mechanisms : 

A F  = JAT dx + J(Ap - AT,,)~’(x/L) dx 

We have shown that at the crest of the undulation the shear-stress perturbation from 
the linear theory is in good agreement with the values computed using the numerical 
model with a second-order-closure model. The numerical magnitude of the non- 
separated sheltering effect is related to the component of the inner-region Reynolds- 
stress perturbation that is in phase with the undulation; this component of the shear- 
stress perturbation is adequately modelled using the mixing-length model in the inner 
region. The formula for the drag coefficient has been shown to agree well with 
numerical studies and experimental values for slopes up to about g, when mean flow 
separation occurs. Finally, including the effects of the shear across the middle layer 
(through the U(1) term) increases the drag from the value predicted by Sykes’ (1980) 
formula and enables the asymptotic theory to be used for practical purposes. 
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of the anonymous referees are also gratefully acknowledged. 

Appendix. Asymptotic solutions from HLR 

to the Cartesian coordinates by 

Mean flow quantities are made non-dimensional using U, = U,(h,) and the Reynolds- 
stress components on pi.  The linear perturbations in the Carteslan coordinates are 
related to those in the displaced coordinates by 

T,.(z) = T~~ - 2isfG, 

The solutions are expressed in terms of the displaced coordinates, which are related 

x = X -  (H/L)  isfl(sZ), z = Z +  ( H / L ) ~ @ Z ) .  (A 1) 

u(z) = u ~ ( z ) ,  w(z> = isfG+ wd(z),  p(z )  = pd(2) 
* w  

7,,(z) = 7z2 + 2isf6, 7(z) = 7d + isfe( T,, - T,,)/pu2,. 
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The following expressions are the solutions for the perturbations in the displaced 
coordinates. 

A. 1. Inner-surface layer 
The vertical coordinate scales on the roughness length, z,, and is 
9 = z*/z, = z/((I/E)~-~). 

with f ( 0 )  = &"), j(1) = (1 + in + 2 Ins + 47) $(O) (A 4) 

d (A 5 )  $0) = - 

A.2. Shear-stress layer 
The order-one vertical coordinate in the shear stress layer is c = Z*/I = Z/c. 

A.3. Middle layer 
The vertical coordinate is scaled on h, so that 2 = Z/h,. Furthermore, for a 
logarithmic approach flow, i = Z/k and h,/L = k. 

A.4. Upper layer 
The vertical coordinate is scaled on L, so that Z = O( 1). By construction, the leading- 
order vertical velocity perturbation in the upper layer is determined by the 
transformation to the displaced coordinates. 

Ud [Sfe-8"L -k O(h,/L)], w d  - O(h,/L), Pa - - Ud. (A 8) 
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